A Lower Bound for Monotone Arithmetic Circuits Computing 0-1 Permanent

نویسندگان

  • Rimli Sengupta
  • H. Venkateswaran
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lower Bound for Boolean Permanent in Bijective Boolean Circuits and its Consequences

We identify a new restriction on Boolean circuits called bijectivity and prove that bijective Boolean circuits require exponential size to compute the Boolean permanent function. As consequences of this lower bound, we show exponential size lower bounds for: (a) computing the Boolean permanent using monotone multilinear circuits ; (b) computing the 0-1 permanent function using monotone arithmet...

متن کامل

Lower Bounds for Perfect Matching in Restricted Boolean Circuits

We consider three restrictions on Boolean circuits: bijectivity, consistency and mul-tilinearity. Our main result is that Boolean circuits require exponential size to compute the bipartite perfect matching function when restricted to be (i) bijective or (ii) consistent and multilinear. As a consequence of the lower bound on bijec-tive circuits, we prove an exponential size lower bound for monot...

متن کامل

A Lower Bound for Noncommutative Monotone Arithmetic Circuits

We consider arithmetic circuits over the semiring ((; min; concat) and show that such circuits require super-polynomial size to compute the lexicographically minimum perfect matching of a bipartite graph. By deening monotone analogues of optimization classes such as OptP, OptL and OptSAC 1 using the monotone analogues of their arithmetic circuit characterizations 13, 1], our lower bound implies...

متن کامل

An exponential lower bound for homogeneous depth four arithmetic circuits with bounded bottom fanin

Agrawal and Vinay [AV08] have recently shown that an exponential lower bound for depth four homogeneous circuits with bottom layer of × gates having sublinear fanin translates to an exponential lower bound for a general arithmetic circuit computing the permanent. Motivated by this, we examine the complexity of computing the permanent and determinant via homogeneous depth four circuits with boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 209  شماره 

صفحات  -

تاریخ انتشار 1998